Acta Cryst. (1986). C42, 520-523

The Structures of Four Caesium Tellurates

By B. O. LOOPSTRA AND K. GOUBITZ

Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 15 October 1985; accepted 23 December 1985)

Abstract. (1) Cs₂TeO₃, $M_r = 441.42$, P321, a = 6.790 (1), c = 7.972 (1) Å, U = 318.3 Å³, Z = 2, D_x $= 4.606 \text{ g cm}^{-3}$. Μο *Κ*α, $\lambda = 0.71069 \text{ Å},$ $\mu =$ 157.8 cm^{-1} , F(000) = 372, room temperature, R =0.045 for 415 unique reflections. (2) $Cs_2Te_2O_5$, M, = 601.02, Pbca, a = 12.102(1), b = 12.092(2), c = 10.760 (2) Å, U = 1574.6 Å³, Z = 8, $D_x = 5.070$ g cm⁻³, Mo Ka, $\lambda = 0.71069$ Å, $\mu = 164.5$ cm⁻¹, F(000) = 2032, room temperature, R = 0.060 for 2592 unique reflections. (3) $Cs_2Te_4O_9$, $M_r = 920.21$, $I\overline{4}2d$, a = 10.783 (1), c = 20.599 (4) Å, U = 2394.9 Å³, Z = 8, $D_x = 5.104 \text{ g cm}^{-3}$, Mo Ka, $\lambda = 0.71069 \text{ Å}$, μ $= 156.6 \text{ cm}^{-1}$, F(000) = 3120, room temperature, R = 0.056 for 1616 unique reflections. (4) $Cs_2Te_4O_{12}$, $M_r = 968 \cdot 21, R\bar{3}m, a = 7 \cdot 2921$ (4), $c = 18 \cdot 332$ (2) Å, $U = 844.2 \text{ Å}^3$ [rhombohedral constants: a =7.4205 (6) Å, $\alpha = 58.858$ (7)°, U = 281.4 Å³], Z = 3. $D_x = 5.713 \text{ g cm}^{-3}$, Mo Ka, $\lambda = 0.71069 \text{ Å}$, $\mu =$ $1\hat{6}6\cdot 8 \text{ cm}^{-1}$, F(000) = 1242, room temperature, R =0.043 for 622 unique reflections. Structures (1) and (2) are related to the perovskite structure, (3) and (4) are of the inverse pyrochlore type. In structures (1)-(3) Te^{IV} atoms are octahedrally coordinated by oxygens and holes, the number of holes varying from 1 to 3. In $Cs_2Te_4O_{12}$ the Te^{IV} atom is at the centre of a very nearly regular octahedron of oxygens, an exceptional coordination for tetravalent Te. In this octahedron the length of the Te–O bonds is $2 \cdot 104$ (7) Å.

Introduction. The elements caesium and tellurium play a prominent role in studies on the safety of nuclear reactors, owing to the formation of volatile compounds. For this reason the system Cs-Te-O was studied. All phases of the system $TeO_2-Cs_2TeO_3$, viz Cs_2TeO_3 , $Cs_2Te_2O_5$ and $Cs_2Te_4O_9$ (Cordfunke & Smit-Groen, 1984), were obtained in a suitable crystalline form. Furthermore, crystals of the mixed $Te^{IV}-Te^{V1}$ oxide $Cs_2Te_4O_{12}$ were isolated. Attempts to isolate single crystals of Cs_2TeO_4 failed, and the same was true for the compounds intermediate between $Cs_2Te_4O_9$ and $Cs_2Te_4O_{12}$.

The crystal structures of the three tellurites and the mixed tellurite-tellurate mentioned above were investigated to gain some understanding of the relation-

0108-2701/86/050520-04\$01.50

ships between them. None of these structures has been described previously. The only caesium tellurate for which unit-cell data are known is Cs_2TeO_4 (Duquénoy, 1971).

Experimental. All specimens prepared by heating Cs_2CO_3 (Merck, 99.5% purity) and TeO_2 (BDH, 99.95% purity) in gold boats in an argon atmosphere for at least 15 h until X-ray pattern showed them to be pure. To obtain single crystals materials melted in gold boats under purified argon, followed by cooling at 2 Kh^{-1} . Cooling ranges: Cs_2TeO_3 : 1103 to 953 K; $Cs_2Te_2O_5$: 723 to 673 K; $Cs_2Te_4O_9$: 848 to 788 K; $Cs_2Te_4O_{12}$: 913 to 873 K. After breaking melts specimen crystals were selected. $Cs_2Te_4O_{12}$ stable in air. All other specimens had to be sealed in glass capillaries in dry box.

Main experimental details are collected in Table 1. Nonius CAD-4 four-circle goniometer. Graphite-monochromated Mo $K\alpha$ radiation. Absorption correction by DIFABS (Walker & Stuart, 1983), Scattering factors from Cromer & Mann (1968), dispersion factors for Cs and Te from International Tables for X-ray Crystallography (1974). Cs and Te positions derived from Patterson functions, O positions from difference maps. Anisotropic temperature factors for Cs and Te, isotropic for O. Extinction correction applied for $Cs_2Te_2O_5$ and $Cs_2Te_4O_9$. Refinement based on blockdiagonal least squares on F using XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976) and XTAL (Hall, Stewart & Munn, 1980). Equivalent reflections averaged after applying absorption correction to yield sets of unique reflections.

Discussion. Tables 2-5 list the final positional parameters for the four compounds. Stereoviews are given in Figs. 1–4. Bond lengths and angles are given in Table 6.*

© 1986 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and full lists of bond lengths and angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42730 (95 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

The structures of Cs_2TeO_3 and $Cs_2Te_2O_5$ are related to perovskite ABO_3 . This is most easily seen in the case of $Cs_2Te_2O_5$, which can be described as $Cs_2Te_2O_5 + \Box$, the \Box representing a hole occupied by the free-electron pairs of the two Te atoms. Cs₂Te₂O₅ is also closely related to cryolite Na₃AlF₆ (Naráy-Szabó & Sasvári, 1938). Te atoms are octahedrally coordinated by three bonded oxygens, two non-bonded oxygens and a hole. Two Te atoms share an oxygen to form Te₂O₅ groups. Two Te₂O₅ groups join holes to accommodate their free electrons.

	Cs ₂ TeO ₃	$Cs_2Te_2O_3$	Cs₂Te₄O ₉	Cs ₂ Te₄O ₁₂
Crystal size (mm)	$0.2 \times 0.1 \times 0.05$	$0.5 \times 0.2 \times 0.1$	$0.3 \times 0.2 \times 0.1$	$0.1 \times 0.06 \times 0.03$
Reflections for measuring lattice	•			
parameters, θ_{max}	(°) 24, 22	24, 18	24, 22	23, 39
θ(°)	35	37	40	40
Min. h,k,l	0,0,-12	0,0,-18	-9,-9,0	0,0,-33
Max. h,k,l	21,21,12	20,20,18	9,9,12	11,11,33
Reflections measur	ed 1110	8530	4025	1354
Reflections with				
$I > 2 \cdot 5\sigma(I)$	744	4003	2565	1068
Unique observed				
reflections	415	2592	1616	622
Control reflection	220	184	488	113
		284		
Intensity variation control reflec-	of			
tion (%)	<u>+</u> 7.8	±3.4	±6.8	±3.3
(Δρ)max. (e Å ⁻³)	1.8	3.6	3.0	3.7
(<i>∆p</i>)min. (e Å ⁻³)	-1.8	-4.2	3.0	-9-8
Rint	0.045	0-060	0.056	0.043
(Λ/σ) max.	0.05	0.37	0.56	0.0
Absorption correct	ion			
max.	1.41	1.43	1.45	1.60
min.	0.77	0.66	0.81	0.81
Extinction correction	on —	0-1	0.4	_

Table 1. Experimental data for (1) to (4)

Table 4. Positional parameters and U_{eq} values (Å² × 100, $U_{eq} = \frac{1}{3} \sum U_{ii}$) with e.s.d.'s for Cs₂Te₄O₉

	x	у	Ζ	$U_{ m eq}$
Cs(1)	0.7205 (2)	0.25	0.125	3.62 (9)
Cs(2)	0.0	0.5	0.00586 (8)	2.54 (6)
Te(1)	0.1250(1)	0.1214 (1)	0.06183 (4)	1.61 (3)
Te(2)	0.3655(1)	0.3905 (1)	0.07226 (4)	1.50 (3)
O(1)	0.297 (1)	0.506 (2)	0.0170 (6)	2.81 (25)
O(2)	0.171 (1)	0.069 (1)	-0.0213 (6)	2.30 (22)
O(3)	0.172 (1)	0.286 (1)	0.0533 (6)	2.45 (23)
O(4)	0.286 (1)	0.054 (1)	0.0975 (6)	2.34 (23)
O(5)	0.5	0.5	0.1035 (8)	2.21 (29)

Table 5. Positional parameters and U_{eq} values $(\dot{A}^2 \times 100, U_{eq} = \frac{1}{3} \sum U_{ii})$ with e.s.d.'s for Cs₂Te₄O₁₂

	x	. <i>y</i>	z	U_{eq}
Cs	0.0	0.0	0.12200 (7)	1.62 (3)
Te(1)	0.0	0.0	0.5	0.35 (3)
Te(2)	0.5	0.0	0.0	0.20(2)
O(1)	0.2036 (6)	-0.2036 (6)	-0·0172 (4)	1.01 (10)
O(2)	0.1364 (6)	<i>—</i> 0·1364 (6)	0.4341 (4)	0.95 (10)

Table 6. Bond lengths (Å) and angles (°) around Te atoms

(1) Cs_2TeO_3			
Te-O (3×)	1.84 (2)	$O-Te-O_1^{\dagger}$	101 (1)
(2) $Cs_2Te_2O_5$			
Te(1)–O(2)	1.83 (1)	O(2)-Te(1)-O(3)	100-9 (5)
-O(3)	1.84 (1)	O(2) - Te(1) - O(5)	98.2 (4)
-O(5)	1.98 (1)	O(3) - Te(1) - O(5)	99•2 (4)
Te(2)-O(4)	1.83 (1)	O(1)-Te(2)-O(4)	101.2 (4)
-O(1)	1.84 (1)	O(1) - Te(2) - O(5)	98·8 (4)
-O(5)	1.97 (1)	O(4) - Te(2) - O(5)	98.3 (4)
$(3) \operatorname{Cs}_{7} \operatorname{Te}_{4} O_{9}$			
Te(1) - O(3)	1.86(1)	O(3) - Te(1) - O(2)	97.6 (6)
-O(2)	1.87 (1)	O(3) - Te(1) - O(4)	98.1 (6)
-O(4)	2.02 (1)	O(3) - Te(1) - O(2)	89.6 (5)
$-O(2^{ij})$	2.31 (1)	O(2) - Te(1) - O(4)	89.9 (6)
		O(2) - Te(1) - O(2)	88.7 (5)
		O(4) - Te(1) - O(2)	172.3 (5)
Te(2)-O(1)	1.84 (2)	O(1) - Te(2) - O(4)	98.1 (6)
$-O(4_1^{ili})$	1.96 (1)	O(1) - Te(2) - O(5)	95.1 (6)
-O(5)	1.98 (1)	O(1) - Te(2) - O(3)	82.5 (6)
-O(3)	2.40(1)	O(1) - Te(2) - O(1)	92.2 (5)
$-O(1_1^{iv})$	2.51 (1)	$O(4_1) - Te(2) - O(5)$	82.3 (6)
-		$O(4_{1}) - Te(2) - O(3)$	84.2 (5)
		$O(4_1) - Te(2) - O(1_1)$	169.3 (5)
		O(5) - Te(2) - O(3)	165.8 (4)
		O(5) - Te(2) - O(1)	94.2 (5)
		$O(3) - Te(2) - O(1_1)$	99.9 (5)
(4) Cs ₂ Te ₂ O ₁₂			
Te(1) = O(2)	(6x) 2·104 (7)	$O(2) - Te(1) - O(2x^{i})$	89.7 (2)
Te(2) - O(2!)	(2x) 1.886 (6)	$O(1) - Te(2) - O(1)^{ii}$	86.0 (2)
-O(1)	(4x) 1.941 (6)	$O(1) - Te(2) - O(2_1)$	88.6 (3)

Table 3. Positional	parameters	and U_{eq}	values	$(Å^2 \times$
100, $U_{eq} = \frac{1}{3} \sum$	U_{ii}) with e.s	.d.'s for C	s ₂ Te ₂ O	5

Table 2. Positional parameters and U_{eq} values $(\text{\AA}^2 \times 100, U_{eq} = \frac{1}{3} \sum \hat{U}_{ii})$ with e.s.d.'s for $\text{Cs}_2^2\text{TeO}_3$

0.0

0.5

0.3589 (2)

0.1644 (1)

0.269 (1)

0.0

0.6667

0.3333

0.611 (2)

0.0

х

0.0

0.0

0.3333

0.6667

0.837(3)

Cs(1)

Cs(2)

Cs(3)

Te

0

	x	У	Ζ	U_{eq}			O(3) - Te(2) - O(1)	99.9 (5)
Cs(1)	0.24742 (6)	0.24601 (6)	0.24745 (7)	1.79 (2)				
Cs(2)	0.49552 (6)	0-49488 (6)	0.21370 (6)	1.69 (2)	$(4) Cs_2 Te_4 O_{12}$			
Te(1)	0.26329 (5)	0.00935 (5)	-0.00048 (7)	1.26 (2)	Te(1)-O(2)	(6×) 2·104 (7)	$O(2) - Te(1) - O(2_2^{vi})$	89.7 (2)
Te(2)	0-48853 (5)	0.23672 (5)	0.00289 (7)	1.26 (2)	$Te(2) - O(2_1^v)$	(2×) 1·886 (6)	$O(1) - Te(2) - O(1_1^{vil})$	86.0 (2)
O(1)	0.4980 (7)	0-2267 (7)	0.1730 (8)	1.93 (15)	-O(1)	(4x) 1·941 (6)	$O(1) - Te(2) - O(2_1)$	88.6 (3)
O(2)	0.1534 (8)	0-1130 (8)	-0·0106 (10)	2.44 (17)				
O(3)	0.2744 (8)	-0.0078 (9)	0.1690 (10)	2.58 (18)		<i>(</i>) <i>i</i>		
O(4)	0.3857 (8)	0-3464 (8)	-0·0148 (9)	2.24 (16)	Symmetry code	: (i) $1-y, x-y, z;$	(ii) $-y, x, -z$; (iii) $x, \frac{1}{2}$	$-y, \frac{1}{4}-z;$ (iv)
O(5)	0-3913 (9)	0.1089 (9)	-0.0280 (10)	2.73 (19)	1-y, x, -z; (v)	$\frac{2}{3}-x, \frac{1}{3}-2x, \frac{1}{3}-z;$ (vi) $2x$, x , $1-z$; (vii) $2x$, x, -z.

 U_{eq}

2.55 (6)

2.33 (5)

3.19 (5)

1.74 (3)

4.66 (34)

Cs(1) Cs(2) Cs(3) Te O

Fig. 1. Cs₂TeO₃. Outlines of unit cell (heavy) and subcell (light) are drawn.

Cs(1) Cs(2) Te(1) Te(2) O

Fig. 2. Cs₂Te₂O₅. Outlines of unit cell (heavy) and subcell (light) are drawn.

Fig. 3. $Cs_2Te_4O_9$. For clarity only the part from z = -0.05 to z = 0.65 is drawn. To show the correspondence with Cs₂Te₄O₁₂ the Te-Te tetrahedra are indicated by a heavy outline.

Fig. 4. $Cs_2Te_4O_{12}$. The contents of the pseudo-cubic F cell and the edges of the hexagonal cell are shown. Te-Te tetrahedra are indicated by a heavy outline.

In Cs, TeO₃, two formula units occupy three rhombohedral perovskite subcells of dimension a = 4.736 Å, $\alpha = 91.59^{\circ}$: $A_3B_3O_9 \rightarrow Cs_3(CsTe_2)O_6$. Cs(2) and Te occupy octahedral B positions, Cs(1) and Cs(3) A positions. Because, compared to perovskite, 1/3 of the oxygen sites are empty, the twelve coordination of the Apositions is reduced to nine for Cs(3) and six for Cs(1). Te free-electron pairs combine to form channels. The TeO_3^{2-} groups do not share oxygens. Te is octahedrally bonded to and coordinated by three oxygens; the remaining positions around the Te site are empty. Powder patterns of C_{5} , TeO₃ show a doubling of the aaxis, giving rise to a number of weak reflections (Cordfunke & Van Vlaanderen, 1985). These reflections were not observed in the present study. Clearly, the true structure is somewhat more complicated than the one derived from our data.

 $Cs_2Te_4O_9$ and $Cs_2Te_4O_{12}$ are closely related. $Cs_2Te_4O_{12}$, the simplest of the two, is isostructural with the inverse pyrochlores (Babel, Pausewang & Viebahn, 1967) and resembles $Cs_2U_4O_{12}$ (Van Egmond, 1975). This latter compound exists in a trigonal form (R3m, a = 10.962 Å, $\alpha = 89.40^{\circ}$) as well as in a closely related monoclinic and a cubic one $(Fd\bar{3}m, a =$ 11.2295 Å). Likewise, $C_{5,Te_4}O_{12}$ can be described by a near-cubic rhombohedral cell (a = 10.383 Å, a =88.99°). Its positions are seen to approximate the inverse pyrochlore positions in $Fd\overline{3}m$ closely after transformation by $-\frac{1}{2}, 0, 1; \frac{1}{2}, -\frac{1}{2}, 1; 0, \frac{1}{2}, 1$ (origin at centre of symmetry). Result: $Cs \sim at 8(a)$ (0.122, 0.122, 0.122), Te ~ at 16(d), O ~ at 48(f) (0.433 + 0.004. 0.125 ± 0.007 , 0.125 ± 0.007). Te(1) and Te(2) transform into one cubic position, O(1) and O(2) very nearly do so (the \pm values show the deviations from the average position). For the cubic form of $Cs_2U_4O_{12}$, the only one for which the oxygen coordinates are quoted (Van Egmond, 1975), the structure determination based on high-temperature powder work indicates x(O) =0.449(5).

In $Cs_2Te_4O_9$, two pseudo-cubic cells are stacked leading to the doubling of the c axis of the unit cell. If only metal sites are considered, Cs₂Te₄O₁₂ and $Cs_2Te_4O_9$ are isostructural with each other and with Cu₂Mg. Te atoms are situated at the corners of tetrahedra linked to each other to form a threedimensional network with large holes occupied by the Cs atoms. In $Cs_2Te_4O_{12}$ all Te-Te edges of each tetrahedron carry an oxygen, resulting in truly octahedral tellurate groups. In Cs₂Te₄O₉ one out of four tetrahedra carries six oxygens, the others have four. This results in octahedral Te-O groups with one or two holes: Te(1) is bonded to four O atoms and Te(2) to five, including weak bonds up to 2.51 Å (Table 6).

It is remarkable that in $Cs_2Te_4O_{12}$ both Te^{1v} and Te^{v_1} have a quite regular octahedral oxygen coordination. Whereas this is usual for Te^{v1}, Te^{1v} appears normally in a deformed and incomplete octahedral coordination

with a coordination number, including all oxygens at less than 3 Å, ranging from 3 to 5, and a number of bonds up to and often less than five. To the accuracy of the present data, Te(1) is situated at a centre of symmetry with six equivalent Te^{1V}-O bonds of $2 \cdot 104$ (7) Å and angles of $90 \pm 0.5^{\circ}$. There is no indication, for example from the temperature factor, that Te(1) is at a site of too high symmetry, to be lowered by changing the space group from $R\bar{3}m$ to $R\bar{3}m$. In fact, refining in $R\bar{3}m$ does not change the Te coordination to any significant extent, as would also hardly be conceivable for a near-cubic structure.

The authors are indebted to Professor Dr E. H. P. Cordfunke and Mr P. Van Vlaanderen of the Netherlands Energy Research Foundation ECN for preparation of the specimens and their great interest shown in the work, and to Mr D. Heijdenrijk for his untiring efforts to select samples and collect the X-ray data.

References

- BABEL, D., PAUSEWANG, G. & VIEBAHN, W. (1967). Z. Naturforsch. Teil B, 22, 1219-1220.
- CORDFUNKE, E. H. P. & SMIT-GROEN, V. M. (1984). Thermochim. Acia, 80, 181–183.
- CORDFUNKE, E. H. P. & VAN VLAANDEREN, P. (1985). Private communication.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A 24, 321-324.
- DUQUÉNOY, G. (1971). Rev. Chim. Minér. 8, 683-721.
- HALL, S. R., STEWART, J. M. & MUNN, R. J. (1980). Acta Cryst. A 36, 979–989.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- NARÁY-SZABÓ, S. & SASVÁRI, K. (1938). Z. Kristallogr. 99A, 27-31.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- VAN EGMOND, A. B. (1975). J. Inorg. Nucl. Chem. 37, 1929–1931. WALKER, N. & STUART, D. (1983). Acta Cryst. A 39, 158–166.

Acta Cryst. (1986). C42, 523-525

;

1

Redetermination of Tricalcium Uranate(VI). A Rietveld Refinement of Neutron Powder Diffraction Data

By H. C. VAN DUIVENBODEN AND D. J. W. IJDO

Gorlaeus Laboratories, State University, Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands

(Received 11 September 1985; accepted 24 December 1985)

Abstract. Ca₃UO₆, $M_r = 454 \cdot 27$, monoclinic, $P2_1/n$, Z = 2. At room temperature: $a = 5 \cdot 7292$ (7), $b = 5 \cdot 9562$ (7), $c = 8 \cdot 2991$ (10) Å, $\beta = 90 \cdot 56$ (1)°, $V = 283 \cdot 19$ (6) Å³, $D_x = 5 \cdot 327$ (1) Mg m⁻³, $\mu R = 0 \cdot 14$. The structure has been refined by Rietveld analysis of powder neutron diffraction data [$\lambda = 2 \cdot 5790$ (3) Å, $R_{\mu\rho} = 6 \cdot 14\%$] for 136 reflections. The structure is of monoclinic, deformed CaTiO₃ type, with ordering of Ca and U in octahedral positions. The stability in water at 573 K and 0.2 GPa for 1 week was tested: it was found that Ca₃UO₆ is totally decomposed under these conditions.

Introduction. The preparation, crystal structure determination and solubility test in water at elevated temperatures and pressures form part of a research program to investigate compounds with perovskite or related structures for their properties as a host lattice for nuclear waste. Ca_3UO_6 is reported to adopt a monoclinic, deformed perovskite-like structure with space group $P2_1$ (Loopstra & Rietveld, 1969). In relation to other substituted perovskites this space group seems too low. The powder diffraction data

0108-2701/86/050523-03\$01.50 © 1986 Inter

suggest the space group $P2_1/n$ in agreement with the powder diffraction data of Ca₃WO₆ (JCPDS file No. 22-541).

Experimental. AR starting materials $CaCO_3$ and U_3O_8 thoroughly mixed in an agate mortar in the appropriate ratio; mixture heated in a platinum crucible at 1073 K for 1 d and, after grinding, heated at 1473 K for one week with repeated grindings, and annealed one week at 1073 K.

X-ray powder diffraction pattern obtained with a Philips PW 1050 diffractometer; all lines could be indexed with a monoclinic unit cell, in accordance with electron diffraction data (Siemens Elmiskop 102 electron microscope, double tilt, lift cartridge, 100 kV). Lattice absences $h0l \ h+l=2n+1$ and $0k0 \ k=2n+1$ in accordance with space group $P2_1/n$. Since no single crystals were available, Rietveld's (1969) method was used for refinement of neutron powder diffraction data; neutron powder profile recorded (room temperature, atmospheric pressure) at the Petten High-Flux Reactor; $5^{\circ} < 2\theta < 163^{\circ}$ in steps of $0 \cdot 1^{\circ}$; neutrons at room temperature from (111) planes of a Cu crystal;

© 1986 International Union of Crystallography